Laufzeit | 01.08.2016 - 30.09.2019 |
Projektkoordination | TU Braunschweig • BLB+ • BLB |
Standort | Braunschweig |
Projektbeteiligte | TUM • iwb Uni Münster • MEET |
Fördersumme | 843.563,00 € |
Projektvolumen | 843.563,00 € |
Fördergeber | BMFTR |
Entscheidend für den Erfolg von mobilen Energiespeichern sind deren volumetrische und gravimetrische Energiedichte. Zu deren Erhöhung werden einerseits hochkapazitive Aktivmaterialien entwickelt, andererseits können deutliche Steigerungen durch hohe Aktivmaterialanteile und Massenbeladungen erzielt werden.
Den entscheidenden Einfluss auf die resultierende volumetrische Energiedichte hat der Prozess der Verdichtung: die Kalandrierung. Neben der signifikanten Verringerung des Schichtvolumens führt die Verdichtung zur deutlichen Steigerung der elektrischen Leitfähigkeit von Beschichtungen mit intrinsisch gering leitfähigen kathodischen Aktivmaterialien.
Weiterhin können die mechanischen Eigenschaften der Beschichtung verbessert werden: Zum einen ist die Haftfestigkeit innerhalb der Schicht und an der Grenzfläche zum Substrat bedeutend für die weiterführende Handhabbarkeit und zum anderen beeinflussen die plastische und elastische Verformbarkeit die Stabilität der Elektroden gegenüber den ionischen Ein- und Auslagerungsprozessen. Die deutliche Verringerung der Porosität reduziert jedoch die elektrochemisch aktive Oberfläche und die für die Ionendiffusion notwendigen Transportkanäle. Ein wichtiges Ziel der Kalandrierung ist dementsprechend die Optimierung der Porenstruktur. Folglich ist das Prozessverständnis entscheidend, um gezielt die optimale Poren- und Partikelstruktur und günstige mechanische Eigenschaften einstellen zu können.
Am iPAT wurde und wird die Kalandrierung heute üblicher, kontinuierlich gefertigter Elektroden seit sieben Jahren in verschiedenen Projekten untersucht, wobei unterschiedliche Methoden zur Charakterisierung von Struktur und mechanischen Größen entwickelt wurden. Das vorgeschlagene Projekt entwickelt die vorhandenen Kenntnisse für energiereiche, kontinuierlich und insbesondere auch absatzweise beschichtete Kathoden sowie Anoden mit hohen Flächengewichten und hochkapazitiven Aktivmaterialien NMC-622 sowie Silicium-Graphit sinnvoll weiter.
Zur Erhöhung der beschränkten Leitfähigkeit der Dickschichtelektroden werden verschiedene Leitadditive getestet. Im Anschluss wird das Verdichtungsverhalten kontinuierlich und absatzweise beschichteter energiereicher Elektroden sowie die Möglichkeiten zur Steigerung der Elektrodenperformance, aber auch der Bahngeschwindigkeit und somit der Produktivität untersucht.
Die Prozessdaten dienen mit den ausführlichen Ergebnissen zur Produktcharakterisierung (insbesondere Porosimetrie) der Weiterentwicklung sowie Kalibrierung eines schon am iPAT erarbeiteten Prozess-Struktur-Eigenschaftsmodells für die Kalandrierung kontinuierlich beschichteter Elektroden mit vergleichsweise geringer Schichtdicke. Anoden und Kathoden mit meistversprechener Struktur sollen miteinander zu Zellen verbaut und elektrochemisch, insbesondere auch am MEET impedanzspektroskopisch, untersucht werden, um die Elektroden und das Produkt Zelle global hinsichtlich der erzielten Energiedichte sowie der elektrochemischen Leistungsfähigkeit zu bewerten und detaillierte Aussagen über die erreichten Ionen- und Elektronentransporteigenschaften zu treffen.
Auf Basis der langjährigen Erfahrung des iwb in der Optimierung des dynamischen Verhaltens von Werkzeugmaschinen, soll neben den in Braunschweig und Münster betrachteten Prozess-Struktur-Eigenschaft-Beziehungen die Wechselwirkung zwischen der Maschinendynamik, den Prozessparametern und den Materialeigenschaften untersucht werden. Insbesondere bei absatzweise beschichteten Elektroden und hohen Schichtdicken muss die Maschinendynamik regelungstechnisch so beherrscht werden, dass dauerhaft und reproduzierbar Elektroden mit gleich hoher Qualität verdichtet werden.
Das Prozessverständnis zur gezielten Elektrodenkalandrierung ist von wesentlicher Bedeutung für eine international konkurrenzfähige Zelle und adressiert im Speziellen die Entwicklung von Prozess-Qualität-, Prozess-Kosten- sowie Qualität-Eigenschaft-Beziehungen. Im Hinblick auf die Gesamtclusterziele und eine geeignete Verknüpfung zu nachgeschalteten Prozessschritten sollen für die Weiterverarbeitbarkeit bedeutsame Eigenschaften (Haftfestigkeit, Benetzbarkeit) untersucht werden und die Elektroden an andere ProZell-Clusterprojekte zu den Prozessschritten Elektrodenkonfektionierung, Befüllung und Formierung zwecks Bewertung der weiteren Verarbeitbarkeit weitergegeben werden. Zur Produktivitätssteigerung wird außerdem die Wirkung höherer Durchlaufgeschwindigkeiten geprüft. Durch die produktionstechnische Betrachtung der Maschinendynamik sollen des Weiteren die deutschen Maschinen- und Anlagenbauer gezielt gestärkt werden.
01.08.2016 - 30.09.2019
03XP0077A
Technische Universität Braunschweig
Braunschweiger LabFactories for Batteries and more
Langer Kamp 19
38106 Braunschweig
Deutschland
01.08.2016 - 30.09.2019
03XP0077B
Technische Universität München
Boltzmannstr. 15
85748 Garching b. München
Deutschland
01.08.2016 - 30.09.2019
03XP0077C
Universität Münster
Corrensstr. 46
48149 Münster
Deutschland
Fördergeber:
Projektträger:
Förderprofil:
Technologie- und Innovationsförderung
Förderart:
PDIR
Leistungsplansystematik:
KB2220 Li-Ionen-Batterien
Kompetenzcluster zur Batteriezellproduktion
Technische Universität Braunschweig
Braunschweiger LabFactories for Batteries and more
Langer Kamp 19
38106 Braunschweig
Deutschland